Rainfall frequency and extreme forecasts

contextualising precipitation outlooks

Dr. Cedric VAN MEERBEECK ${ }^{1}$, Dr. Simon MASON², Ángel MUÑOZ², Dr. Teddy ALLEN ${ }^{2}$
${ }^{1}$ Caribbean Institute for Meteorology and Hydrology (CIMH), Barbados
${ }^{2}$ International Research Institute for Climate and Society (IRI), USA

The 2015 Wet/Hurricane Season Caribbean Climate Outlook Forum, June 1-2, St. Lucia

Climate Early Warning - forecasting

Note: JJA 2015 outlook predicted 40-50\% chance of below-normal rainfall. BUT: Given that is the wet season, what precisely is going to happen?

- What kind of forecasts best inform Climate Early Warning?
- Reliable = forecast probabilities correspond well with observed frequencies
- Timely
- Understandable language
- Salient = forecast must relate to an outcome of direct interest to the user
- Sharp = probabilities are high enough for effective sectoral resources allocation
- Cost-effective and sustainable

Why introduce rainfall frequency forecasts?

- Learn how to contextualise precipitation outlooks
- Indicate the risk that climate poses, not so much the (un)likelihood.
- Predicting rainfall (accumulation) consists of predicting if rain will fall (occurrence) and how much will fall (intensity).
- Intensity is very hard to predict; occurrence is simpler.

Why introduce rainfall frequency forecasts?

- Learn how to contextualise precipitation outlooks
- Predictability for occurrence exceeds that of rainfall accumulation, which will lead to higher probabilities.
- With higher probabilities, users will be more easily convinced to take specific action.
- Hence a "wetness" or "flood potential" action alert type outlook product may work well.
- Once we know which frequency and intensity thresholds lead to flood potential, we can start building a flood potential action alert outlook.

Forecasting wet day frequency within a season

Wet day frequency shifts June to August 2015

Frequency shift

Wet day = day with precipitation of at least 1 mm

Their frequency (or numbers) within a season indicate whether:
a) rainfall well spread (high number) or concentrated (low number) if season as a whole is wet
b) scant rainfall will be spread (low number) or concentrated (very low number) if season as a whole is dry

Forecasting wet day frequency within a season

Frequency shift

FORECAST: Region-wide, June to August rainfall expected to be below- to normal, with fewer wet days than usual.

2010 JJA Rainfall at Hewanorra, St. Lucia

JUNE
JULY
AUGUST
SEPT

2010 JJA Rainfall at Hewanorra, St. Lucia

Hewanorra

Average range of 7-day wet spell events:

Predicted range of 7-day wet spell events for JJA 2015:

3 to 7 events

2 to 5 events

Forecasting shifts in wet spell frequency within a season

Probability (\%) of Most Likely Category

Wet day frequency shifts June to August 2015

7-day wet spell
= period of 7 consecutive days with precipitation in the top $\mathbf{2 0 \%}$

Forecasting shifts in wet spell frequency within a season

JJA 2015 frequency of 7-day wet spells

7-day wet spell

= period of 7 consecutive days with precipitation in the top $\mathbf{2 0 \%}$

Forecasting shifts in very wet spell frequency within a season

JJA 2015 frequency of 7-day wet spells

7-day wet spell
= period of 7 consecutive days with precipitation in the top $\mathbf{2 0 \%}$

JJA 2015 frequency of 7-day very wet spells

7-day very wet spell

= period of 7 consecutive days with precipitation in the top $\mathbf{1 0 \%}$

Forecasting shifts in very wet spell frequency within a season

JJA 2015 frequency of 7-day wet spells

JJA 2015 frequency of 7-day very wet spells

FORECAST: Region-wide, June to August rainfall expected to be below- to normal, with fewer wet days and wet spells than usual.

Reduced flood potential throughout the region (with the exception of the Bahamas)

June to August 2015 Forecast

Antigua (VC Bird)	$26-41$	$23-35$
Aruba (Beatrix)	$7-17$	$3-11$
Barbados (CIMH)	$34-50$	$27-40$
Barbados (GAIA)	$36-48$	$29-43$
Belize (C. Farm)	$34-52$	$26-40$
Cayman	$27-41$	$24-39$
Cuba (Punta Maisi)	$7-15$	$5-12$
Dominica (Canefield)	$48-66$	$43-60$
Dominica (Douglas Charles)	$53-68$	$49-63$
Dom. Republic (Las Americas)	$19-34$	$18-30$
Grenada (MBIA)	$42-50$	$40-51$
Jamaica (Worthy Park)	$26-38$	$18-31$
Martinique (FDF Desaix)	$48-63$	$46-59$
Puerto Rico (San Juan)	$31-48$	$29-48$
St. LuCia (HeWanorra)	$41-58$	$35-46$
St. Maarten (TNCM)	$30-42$	$23-40$
St. Vincent (ET Joshua)	$55-67$	$52-65$
Suriname (Zanderij)	$52-63$	$51-65$
Trinidad (Piarco)	$53-64$	$44-57$
Tobago (ANR Robinson)	$42-52$	$31-46$

brown - decrease in numbers, dark blue - increase in numbers

Rainfall frequency forecasts

- A proof of concept
- YOUR INPUT: threshold values (e.g. 10omm in 1 week) and duration of interest for wet spells
- The more extreme, the less predictable.
- Technical methodology for rainfall frequency prediction can be applied to dry spells and heat waves.

Thank you

